
IN3032UG: Ethernet Debugger User Guide

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use
of Intona products. To the maximum extent permitted by applicable law: (1) Materials are made available
”AS IS” and with all faults, Intona hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Intona shall not be liable
(whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage
of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by
a third party) even if such damage or loss was reasonably foreseeable or Intona had been advised of the
possibility of the same. Intona assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute,
or publicly display the Materials without prior written consent. Intona products are not designed or intended
to be fail-safe or for use in any application requiring fail-safe performance.

© Copyright Intona Technology GmbH, Germany.
Intona and other designated brands included herein are trademarks of Intona in Germany and other countries.
All other trademarks are the property of their respective owners.

Website: https://intona.eu

https://intona.eu

Contents
1 Introduction 4

1.1 Features . 4
1.2 Requirements . 4
1.3 Restrictions . 4
1.4 Firmware Changelog . 5

1.4.1 Firmware 1.06 . 5
1.4.2 Firmware 1.00 . 5

1.5 Host Tool Changelog . 5
1.5.1 Host tool git master . 5
1.5.2 Host tool v1.2 . 6
1.5.3 Host tool v1.1 (686fe4f) . 6
1.5.4 Host tool v1 (f5eed9c) . 6

2 Hardware Setup 7
2.1 LED Meaning . 7

2.1.1 Port LEDs . 7
2.1.2 Main LED . 7

3 Software Installation 8
3.1 Linux . 8
3.2 macOS . 8
3.3 Windows . 8
3.4 Verifying Device Access . 9
3.5 Wireshark extcap Setup . 9

3.5.1 Linux, macOS . 9
3.5.2 macOS (app bundle) . 10
3.5.3 Windows . 10

3.6 Firmware Update . 10
3.6.1 Unix-like . 10
3.6.2 Windows . 11

4 Capturing 12
4.1 Wireshark extcap . 12

4.1.1 Capturing Options . 12
4.1.2 Wireshark extcap Toolbar . 12

4.2 Directly Starting Wireshark from Host Tool . 12
4.3 Statistics . 13
4.4 Capturing to a File . 13
4.5 Selecting the Device . 13
4.6 Configuring the Buffer Size . 13

5 Other Features 14
5.1 PoE Passthrough . 14
5.2 PTP Timestamps . 14
5.3 Supported Command Line Options . 14
5.4 Interactive Command Line . 15
5.5 Supported Commands . 15
5.6 IPC Interface . 16
5.7 Identify Function . 16
5.8 Latency Tester . 17

5.8.1 Introduction . 17
5.8.2 Instructions . 17

5.9 Packet Injection . 20
5.10 Blocking Ports . 21

2

Contents

5.11 Packet Disruption . 21
5.12 MDIO Access . 21

5.12.1 Raw MDIO access . 21
5.12.2 Changing PHY Ethernet Speed . 22

5.13 Device Settings . 22

6 Known Problems 22

7 Further Readings 23
7.1 White Papers . 23

7.1.1 Ethernet Debugger Timing . 23
7.2 Statements . 23

7.2.1 Letter of Volatility . 23

3

1 Introduction

1 Introduction

The Intona Ethernet Debugger is a device to capture packets between two Gigabit Ethernet devices. It
provides two ethernet ports, and each port forwards all traffic to the other port, as well as to a PC con-
nected via USB. The intended purpose is low level debugging of anything above the ethernet physical
layer, mainly using Wireshark and similar protocol analyzers. It helps when developing your own proto-
cols layered on top of ethernet, developing your own MAC, or just for observing what is going on on your
network.

1.1 Features

This device can log complete ethernet packets as received by the PHY. There is no processing of captured
packets – preamble, SFD, and FCS are all left intact. Packets with incorrect CRC sums are not discarded.
Ethernet packets which violate the specification are captured as far it is possible. Some normally invisible
low level details are explicitly logged, such as interpacket gaps and CRC errors. Jumbo frames (ethernet
packets longer than 1500 bytes) are supported and fully captured up to 16KB size.

Capture output is directly streamed to the PC. There is no kernel device driver. The device is accessed
through a libusb userspace driver. You do not necessarily need elevated privileges. Installing the device
will not destabilize your system. In particular, the device is not exposed as network device. This has the
advantage that your OS will not mess with it. Neither will it attempt to drop or filter packets received
through it, nor will it attempt to send random packets to it (ARP etc.). The latter would show up in
Wireshark, and confuse your development efforts.

Capture can be directly started fromWireshark (if installed correctly). The userspace driver also provides
a command line interface, which can be used to access advanced feature. An IPC interface is provided
for use cases like scripting.

There are many other features. See Other features section.

1.2 Requirements

The software works on Windows, Linux, and macOS. We provide an installer for Windows. Windows 10
64 bit is required, but Windows 7 may work as well. For macOS, a homebrew tap is provided1. For Linux,
source code and build instructions are provided2, which should work on any Linux distro.

USB 3.0 or later host and cable are recommended. USB 2.0 may work in low bandwidth scenarios. Us-
ing an USB hub, and/or connecting multiple USB devices to an USB hub/host may reduce the maximum
bandwidth at which capture is possible without capture overflows.

1.3 Restrictions

Ethernet is intercepted by putting twoPHYs between the twoports. There is no direct connection between
the ethernet TX/RX wires of the ports. Each PHY negotiates the ethernet connection separately. No link
can be established without USB power.

Old firmware (before 1.06) requires the user to set the ethernet speed manually if the devices connected
to the debugger’s ports negotiated different ethernet standards (for example 100 MBit vs. 1 Gb).

The PC needs to be fast to capture at full speed. Capturing in real timewith maximum ethernet bandwidth
directly to Wireshark or a slow hard disk may not be possible. (This is due to host performance problems

1https://github.com/intona/homebrew-ethernet-debugger
2https://github.com/intona/ethernet-debugger#build-instructions

4

https://github.com/intona/homebrew-ethernet-debugger
https://github.com/intona/ethernet-debugger#build-instructions

1 Introduction

outside of our control.) Packet buffer overflows should be expected when operating near maximum band-
width. There is no hardware packet filter.

1.4 Firmware Changelog

The firmware version is reported in the bcdDevice field in the USB device descriptor, or can be determined
by using the ”hw_info” command in the host tool.

1.4.1 Firmware 1.06

Updating to host tool v1.2 is recommended.

Bug fixes

• Fix device becoming unable to capture packets on FIFO overflows

Potential incompatibilities and problems

• This is compatible down to host software v1, but host software v1.2 is recommended; there may be
strange behavior with host software v1 in certain cases

• The device accesses some MDIO registers automatically now, instead of leaving the host software
in full control

New features

• Add autospeed mode (do not require user to manually adjust each PHY’s speed if they have negoti-
ated different speeds)

• The autospeed setting is persistently stored on the device
• Improved packet timestamp accuracy

1.4.2 Firmware 1.00

• Initial release.

1.5 Host Tool Changelog

The host tool’s version can be determined with the ”hw_info” command, or simply running ”nose
--version”.

Note: you can also look at the public git repository’s commit log.

1.5.1 Host tool git master

Unreleased, but publicly available. (Also picked up by Homebrew formulae.)

Bug fixes

• Correct doubled injector packet count reported by hw_info command

New features

• Latency tester feature
• Tab completion (if built with readline; dysfunctional on Windows)
• --cmd option

5

1 Introduction

1.5.2 Host tool v1.2

Updating to firmware 1.06 is recommended.

Potential incompatibilities and problems

• Firmware update is now invoked differently
• Changes to inject and disrupt command parameters

Bug fixes

• In Wireshark extcap mode, terminate properly if no packets were captured

New features

• Full support for firmware 1.06
• Slightly improved link status reporting
• Extend capabilities of inject and disrupt commands
• Change USB device name format and include device address (allows distinguishingmultiple devices
connected to chained hubs)

• Accept device serial number as device name and report it via extcap to Wireshark
• Add quoting/escaping and named arguments to command parser
• Perform more parameter validation in command/option parser
• Unify PHY/port names to A/B/AB/none (a mix of conventions was used before)

1.5.3 Host tool v1.1 (686fe4f)

• Add ”speed” convenience command
• Improve capture stats log behavior
• Note that this used to be untagged in the public git repository

1.5.4 Host tool v1 (f5eed9c)

• Initial release
• Note that this used to be untagged in the public git repository

6

2 Hardware Setup

2 Hardware Setup

The ethernet debugger needs to be powered via USB to forward any packets. Without power, communica-
tion between the two ports is blocked. Make sure USB cable and host port are at least USB 3.0 compliant.
If you use USB hubs or USB isolators, make sure they all support USB 3.0. USB 2.0 will work, but will
provide degraded functionality, as USB 2.0 bandwidth is lower than that of Gigabit Ethernet.

Attach the ethernet cables to the ports. Make sure you are breathing regularly. As soon as both port LEDs
indicate a connection, and the negotiated ethernet speed matches between both ports, communication
is possible.

2.1 LED Meaning

2.1.1 Port LEDs

The LED in use indicates the ethernet speed mode. If packets are sent or received, the corresponding
LEDs will blink.

Speed LED L LED R

1000 MBit off on
100 MBit on on
10 MBit on off
no link off off

Note that it’s possible for one port to have a link, while the other port does not. They also can have
mismatched speed. In both cases, capture will not work. 10 MBit mode is not supported.

2.1.2 Main LED

Normally, the main LED should be blue. It will blink if capturing is in progress. The following states exist:

LED state Meaning

Blue USB super speed connection is up
Green USB high speed connection is up (slow, but functional)
Cyan USB power only (will not work)
Blue blinking capturing at USB super speed is in progress
Green blinking capturing at USB high speed is in progress (will drop packets)
Blue/green blinking the blink_led command is being used (only for a short moment)
Red initial bootloader failed (probably flash problem)
Red blinking bootloader failed (probably flash problem)
Off low level bootloader/firmware crash, or no USB power
Red/yellow blinking fatal higher level firmware error
Red/blue or Red/green blinking firmware update failed; running factory firmware version

When you experience problems, it is useful to describe the LED state exactly in support requests, even if
the observed variant is not listed above.

7

3 Software Installation

3 Software Installation

The software consists of a host tool, called ”nose”. It performs the following roles:

• userspace driver for the device
• Wireshark integration via Wireshark extcap
• command line tool for explicit access

3.1 Linux

No binaries or packages are provided. You can build it from the public git repository. Binary builds or
packages for popular Linux distributions may be provided if there is enough demand.

• build the host tool from the git repository (see https://github.com/intona/ethernet-debugger#build-
instructions)

• create a symlink for Wireshark extcap (see Wireshark section for details)

You may need to install an udev rule to get access to the USB device as normal user:

sudo cp udev.rules /etc/udev/rules.d/50-intona-ethernet-debugger.rules
sudo udevadm trigger

3.2 macOS

No binaries are provided. Hence the software is provided as source code, you can automatically download
and build it using Homebrew.

brew install --HEAD intona/ethernet-debugger/nose

Homebrew is a 3rd party project for installing freely available software on macOS. See https://brew.sh/
for details and how to install Homebrew itself.

You need to setup Wireshark extcap manually. See below.

We decided to not provide binaries for macOS because it is quite impossible to deliver unified, stable
executables that will work on various releases of both software API and CPU types. Think on the platform
change to ARM. This is no issue when compiling from sources using Homebrew.

3.3 Windows

• make sure that Wireshark is installed before you proceed
• double-click the installer
• press next a lot of times

It does not matter whether the device is connected during installation. In fact, the installer does not try to
access the device at all.

You can reinstall any time. Updating Wireshark might remove the Ethernet Debugger Wireshark integra-
tion. Reinstalling the Ethernet Debugger will restore it.

8

https://github.com/intona/ethernet-debugger#build-instructions
https://github.com/intona/ethernet-debugger#build-instructions
https://brew.sh/

3 Software Installation

3.4 Verifying Device Access

A simple way to verify whether the software works is by simply running the host tool. It is a command
line program. On Windows, double-clicking nose.exe will open a terminal window, while on Unix, you
need to open a terminal window manually, and then run nose in it.

If the installation succeeded, and the device is connected, you should see the following:

Device 2:3:7 opened.
PHY A: link=down speed=0MBit
PHY B: link=down speed=0MBit
Warning: no link.

The example above has the device on USB bus 2, port 3, device address 7.

If the device could not be found or accessed, the following is shown:

No devices found.

You can stop the host tool by closing the terminal or by entering the ”exit” command.

3.5 Wireshark extcap Setup

Wireshark is the recommended way to use the Ethernet Debugger. It is 3rd party software and not devel-
oped by Intona. Download and install it from Wireshark’s website: https://www.wireshark.org/download
.html

Normally, the Windows installation procedure installs our host tool as a Wireshark ”extcap”. In short,
”extcap” allows external programs (such as our host tool) to provide a capturing source. See theWireshark
extcap section for details. If the host tool is not correctly installed as extcap source, you will not be able
to start capture from the Wireshark GUI (but other methods of capturing will still work.)

The host tool supports extcap directly via special command line parameters. It must be located in the
”extcap” sub directory within the Wireshark installation directory or the user’s Wireshark configuration
directory. The paths depend on the operating system and the Wireshark installation location.

You can confirm whether it’s installed correctly by opening the Wireshark about dialog, and switching to
the ”Plugins” tab. There should be an entry named ”nose”.

Old Wireshark versions
The non-global/user-specific extcap paths below require at least Wireshark 3.1.1. Older
releases support global paths only.

3.5.1 Linux, macOS

It is recommended to create a symlink to the host tool. The global path is something like /usr/lib/wireshark/extcap/
or /usr/lib/x86_64-linux-gnu/wireshark/extcap/. The exact path depends on the Linux distro. The user-
specific path is usually ~/.config/wireshark/extcap/.

The following should install it locally, assuming ”nose” is already installed:

mkdir -p ~/.config/wireshark/extcap/
ln -s `which nose` ~/.config/wireshark/extcap/nose

9

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html

3 Software Installation

3.5.2 macOS (app bundle)

The following is useful if you want to install the extcap globally, or on older Wireshark versions, assuming
”nose” is already installed via Homebrew:

ln -s `which nose` /Applications/Wireshark.app/Contents/MacOS/extcap/nose

The /Applications/Wireshark/ part of the path can be different, depending onwhere exactlyWireshark
is installed. Check the Wireshark about dialog (”Folders” tab) if you are unsure.

You need to start Wireshark at least once before you run the above command. Otherwise,
macOS may show a security warning, and it won’t work.

3.5.3 Windows

Since Windows does not support symlinks properly, it is recommended to create a .bat file in the Wire-
shark extcap sub-directory. The installer creates a file named intona-ethernet-debugger.bat with the
following contents (assuming default paths and English locale):

"C:\Program Files\Intona\Ethernet Debugger\nose.exe" "%*"

This ”redirects” all invocations to the actual installation location.

The user-specific path is C:\Users\USERNAME\AppData\Roaming\Wireshark\extcap\. Replace USERNAME
with the actual username. You may need to create the last component of the path. The installer does not
try to use this.

UpdatingWireshark tends to remove and recreate theWireshark installation directory. This
will also remove the intona-ethernet-debugger.bat file created by the Ethernet Debug-
ger installer. You could run the installer again to fix this. Manually moving the .bat to the
Wireshark user-specific configuration path mentioned above avoids this.

3.6 Firmware Update

Firmware updates may be required to get new features and to apply bug fixes. Normally they are not
necessary. Applying such an update must be done explicitly. The update process rewrites the device’s
flash memory, and should not be interrupted. Make sure the device is connected via USB 3.0, as the
update will take a long time with USB 2.x. Firmware downloads are available here3.

3.6.1 Unix-like

Plug in the device, and ensure it’s using USB 3.0. Then run the following command on the terminal:

nose --firmware-update Downloads/firmware.dat

Where Downloads/firmware.dat is the path to the firmware binary you downloaded.

If the firmware file is accepted, and the device is accessible, something like this will appear:
3https://www.intona.eu/products/ethernet-debugger#downloads

10

https://www.intona.eu/products/ethernet-debugger#downloads

3 Software Installation

Firmware file: version 1.06
Select firmware update action:

Choice Address Serial Firmware version

4 2:7:12 08900037 1.06

a Update all devices with outdated firmware
b Force update all devices (dangerous)
c Do nothing and exit

Enter your choice:

If you type 4 followed by the enter key, the device 08900037 will be updated. The tool will exit when
the update is finished or aborted. On success, the device restarts on its own, and runs the new firmware
immediately.

You can confirm successful update by comparing the device version number (bcdDevice) with the version
indicated by the update. If the device comes up and blinks red, retry the update, or if the tool fails again,
contact support.

If the --device option is provided, the tool will update the given device without asking for confirmation.
--firmware-update-all will update all detected devices without asking for confirmation. In both cases
(at least with v1.2) the firmware is written only if it’s newer than the firmware on the device, unless --
firmware-update-force is provided.

Old host tool versions (before release v1.2) do not ask for a choice, but start the updatewith
the first device found without confirmation. It is recommended to download and install the
newest host tool before performing a firmware update.

3.6.2 Windows

The same instructions as with Unix apply. You can double-click ”firmware-update.bat” in Explorer in the
Ethernet Debugger installation folder to avoid constructing a command line. This will use firmware.dat in
the same folder. In addition, the installer comes with the latest release of the firmware. Installers for host
tool v1.0 (build 53) do not have this yet; download a newer version here4.

(The host tool never ”phones home”, and there is no automatic update over internet.)

4https://intona.eu/en/products/ethernet-debugger#downloads

11

https://intona.eu/en/products/ethernet-debugger#downloads

4 Capturing

4 Capturing

The main purpose of the ethernet debugger is to capture packets. The following methods are available.

4.1 Wireshark extcap

If you openWireshark, it should display any plugged in Intona Ethernet Debuggers as Ethernet Debugger
USB (08900037) in the list of capture interfaces. The 08900037 in the brackets is the serial number (as in
the USB device descriptor). (Some versions ofWireshark also show the device address in the format used
by the host tool.) Double click this entry, and Wireshark should start capturing. The Ethernet Debugger’s
main LED will start blinking.

There is no hotplugmechanism forWireshark extcaps. If you connect or disconnect devices
while Wireshark is running, you may need to press F5 or restart Wireshark to update the
device list of Ethernet Debugger capture devices.

Note that if the bandwidth utilization is high, the internal FIFO may overrun, leading to lost packets. The
host tool adds a packet comment to the first packet after a run of dropped packets.

It may also happen that Wireshark freezes if the amount of data is too large, because the GUI requires
a large amount of resources to deal with packet input. (Capturing to disk via the ”nose” tool may help
reducing packet drop. You can open the capture file with Wireshark afterwards.)

Various error conditions may deadlock Wireshark and the host tool on capture start.

4.1.1 Capturing Options

Wireshark lets you set some Ethernet Debugger specific options before starting capture. Click on the
gear-like symbol left of the Ethernet Debugger interface in Wireshark’s Capture interface list.

4.1.2 Wireshark extcap Toolbar

The host tool provides a toolbar in Wireshark. This is implemented through the extcap mechanism. It is
slightly clunky due toWireshark restrictions (all GUI code is provided byWireshark, and not everything can
be realized). The toolbar can be shown by enabling it in the Wireshark ”View” menu, ”Interface Toolbars”
sub-menu.

4.2 Directly Starting Wireshark from Host Tool

You may use the --wireshark option of the host tool to start Wireshark and capturing in one go. It
attempts to find the installation path of Wireshark, sets up a named FIFO, and starts a new Wireshark
process.

Example

nose --wireshark

Lifetime of Wireshark process on Unix
Since host tool version v1.2, Wireshark is not terminated anymore if capturing ends or nose
is exited. Older versions always terminated it due to being in the same process session.

12

4 Capturing

4.3 Statistics

The host tool --capture-stats option can be used to enable regular statistic updates on the terminal.
The ”set capture-stats true” command can be used to do this at runtime. (You can enter this command on
the Wireshark extcap toolbar, for example.)

4.4 Capturing to a File

The host tool --fifo option can be used to capture either to a real file on disk, or a named FIFO. The
capture_start command is similar, and can be used to start capturing via the host tool command line or
IPC interface. The format of the output is PcapNG (see https://pcapng.github.io/pcapng/). You may use
the third party open source libpcap library to parse such files. If you use an actual FIFO, you can stream
in real time.

Note that if you capture to disk, overruns can happen due to waiting on disk I/O. The host tool tries to
avoid this by using decoupled memory buffers, but these may be slowly filled up, until a software overrun
happens.

Example

Capturing to a file until Ctrl+C is hit, and log capture statistics to stdout.
nose --capture-stats --fifo target_file.pcapng

Manually starting Wireshark.
On terminal 1:
mkfifo /tmp/fifo
nose --fifo /tmp/fifo
On terminal 2:
wireshark -k -i /tmp/fifo

4.5 Selecting the Device

If you have multiple Ethernet Debuggers, the --device option can be used to pick a specific device. Pass-
ing the special value help to this option lists all devices that were found.

Multi-Capture
Selecting multiple devices at once is not possible. However, if extcap is correctly installed,
you can select multiple capture devices in Wireshark. This will provide a merged view of
data coming from multiple devices and host tool instances.

4.6 Configuring the Buffer Size

The --capture-soft-buffer and --capture-usb-buffer can be used to fine-tune the sizes of the fixed
size buffers allocated on the host. Raising them may reduce buffer overruns on the host PC.

13

https://pcapng.github.io/pcapng/

5 Other Features

5 Other Features

5.1 PoE Passthrough

Both ethernet ports are capable of handling Power over Ethernet (PoE) as specified in IEEE
802.3af, 802.3at and 802.3bt. Power is passed through in both directions without interception.

5.2 PTP Timestamps

The device provides high resolution timestamps for packets. This can help to debug PTP related issues,
or any other timing issues. These timestamps are in nanoseconds with 10 ns resolution.

Each PHY has its own FIFO, which may affect accuracy. In addition, device-internal CDC may affect the
accuracy. Internally, the timestamps are generated by a 100 MHz clock and are passed to the ethernet
PHY’s (RGMII) clock domain, which introduces jitter. The timestamps are relative to device start.

The host tool capture output adds a start offset to the timestamps to make them roughly line up with wall
clock times. However, this offset is not precise, and there is no time correction. The absolute time of a
packet event might be slightly different from real time. The longer the capture is running, the higher the
deviation will be.

IN3083WP has additional information.

5.3 Supported Command Line Options

You can list supported options as follows:

nose --help

Current list of options:

Name Description

--verbosity 0|1|2 Set verbosity log level: 0 silent, 1 normal/default, 2 verbose
messages

--version Print host software version and exit
--selftest Run internal self-test. (Requires a loop between the two ports.)
--selftest-serial Internal.
--wireshark Start wireshark and dump packets to it. Terminate once done.
--device name Open this device. (Pass ”help” to get a list. ”none” prevents

automatic opening of a device.)
--firmware-update file Perform a firmware update using this file.
--firmware-update-all Update firmware of all devices that have been found. (Since v1.2.)
--firmware-update-force Update firmware even for devices which have the current or newer

firmware version. (Since v1.2.)
--fifo file Start capture and write to the given file or fifo. (Overwrites the

target if it’s a file.)
--ipc-connect path Connect IPC to this socket/named pipe. Terminate on disconnect.
--ipc-server name Host IPC on this socket/named pipe.
--capture-soft-buffer num Capture soft buffer (in bytes, accepts kib/mib/gib suffix)
--capture-usb-buffer num Capture libusb buffer (in bytes, accepts kib/mib/gib suffix)
--capture-stats Show capture statistics every 1 seconds.
--extcap-* Various options for use by the Wireshark extcap mechanism.

14

5 Other Features

Name Description

--capture Used by Wireshark; ignored by host tool.
--strip-frames Strip preamble, SFD, and FCS from ethernet frames.
--cmd commands Run commands on opening. (Must be a single string, separate

commands with ;)

5.4 Interactive Command Line

The host tool has an interactive command line interface. When starting the host tool without commands,
it will wait for commands from the terminal. You can use the ”help” command to list available commands
and their parameters. Many advanced features (such as listed below) are accessible only through this
interface.

By default, the host tool will read from stdin and accept commands. It will terminate if stdin is closed or
returns EOF. If run on the terminal, it offers an interactive command line using libreadline. (If the host tool
was built without libreadline, or you can use the rlwrap5 3rd party tool to get comfortable line editing and
history:

rlwrap nose <arguments for nose>

5.5 Supported Commands

Name Description

blink_led Flash main LED
block_ports Block or unblock all packets
capture_start Start capturing to a file or FIFO
capture_stop Stop current capture
cfg_packet Send internal command to device
device_close Close the current device
device_list List all Ethernet Debuggers connected to this PC
device_open Open a device
disrupt Setup packet disruption and port blocking
disrupt_stop Disable packet disruption and port blocking
exit Exit the host tool
help Show all commands
hw_info Show device information (including firmware version etc.)
inject Setup packet injector
inject_stop Disable packet injector
mdio_read Read a PHY’s MDIO register
mdio_write Write a PHY’s MDIO register
reset_device_settings Restore default settings on the currently opened Ethernet Debugger
set Set a command line parameter
set_device_phy_wait Configure PHY speed negotiation delay time
speed Configure PHY speed negotiation mode
latency_tester_sender Setup device as latency tester sender
latency_tester_receiver Setup device as latency tester receiver

5https://github.com/hanslub42/rlwrap

15

https://github.com/hanslub42/rlwrap

5 Other Features

Some commands are described in further detail in the following sections. The help command lists param-
eters accepted by each command.

5.6 IPC Interface

The command line interface is available via IPC (unix domain sockets on UNIX, named pipes onWindows).
This may be helpful for scripting. For example, you could inject or drop packets under specific situations,
or start/stop capturing at specific times

The --ipc-server command can be used to bring up the server at a specific path while the host command
runs. --ipc-connect can be used to make the host tool initiate the IPC connection, which may be more
convenient with certain frameworks.

You can send commands in text or JSON form (the help command lists available commands and shows
the basic syntax). The protocol uses 1 JSON object per line (in both directions of communication). A line
is terminated with \n (ASCII line feed, byte 10). It is fairly self-describing:

IPC example

{"command":"mdio_read", "phy":1,"address":1,"id":1} // client to host tool
{"id":1,"result":31049,"success":true} // host tool to client

The id field is an arbitrary integer chosen by the client, and can be used to associate requests with replies.
The C-style comments are for illustration, and not part of the protocol.

Log messages (such as output when PHY links change their state) are wrapped into special JSON mes-
sages:

Log message example

{"type":"log","msg":"PHY 1: link=up speed=1000MBit\n"}

5.7 Identify Function

The blink_led command will f lash the device main LED blue/green for a moment. This is helpful to
determine which device is opened on a host tool instance if multiple Ethernet Debuggers are connected
to a PC.

16

5 Other Features

5.8 Latency Tester

5.8.1 Introduction

This feature involves sending generated ethernet packets from one Ethernet Debugger to a second one,
and measuring the delay. This can be used to test the latency if a 3rd device, using a setup like this:

Ethernet Debugger 1 is the sender, Ethernet Debugger 2 is the receiver. The sender generates packets
that get sent out of port A and B at the same time. DUT is expected to propagate the packet unchanged
to the receiver. The receiver measures the difference in arrival time between port A and B.

The Latency Tester feature takes care of generating/sending the packets and analyzing them on the re-
ceiver side. It writes the computed delay time to a text file. The packets use a (hopefully) unused EtherType
(0xBEEF). The feature as currently implemented can test at most Layer 2 devices (like ethernet switches).
Testing devices that operate on a higher layer (such as IP routers) are not supported, as that would require
implementing parts of ARP and IP (though it’s theoretically possible).

5.8.2 Instructions

Connect the devices as in the diagram above. On the PC, open two ”nose” instances, one for the sender,
one for the receiver. Use the device_list command to confirmwhether the correct device is opened (change
it with the device_open command). Then run the latency_tester_sender command on the sender instance,
and latency_tester_receiver on the receiver instance. By default the sender starts sending continuously
with 1 packet per 1 ms, with a test sequence that lasts 10 seconds. The receiver ignores the packets until
a start packet is detected, and then logs the status every 10 packets (it logs the delay for only the 10th
packet, use file output to retrieve all data points).

Sender setup

17

5 Other Features

Device serial1 / 4:2:15 opened.
PHY A: link=up speed=1000MBit (master)
PHY B: link=up speed=1000MBit (master)
> device_list
Devices:
- 'serial1' (4:2:15) [opened]
- 'serial2' (4:2:16)

Found 2 devices.
> device_open serial2
USB device closed.
Device serial2 / 4:2:16 opened.
Opening succeeded.
PHY A: link=up speed=1000MBit (slave)
PHY B: link=up speed=1000MBit (master)
> latency_tester_sender
Latency tester: new test run (0)
Latency tester: new test run (1)
Latency tester: new test run (2)

If continuous sending is not desired, you can also just run ”latency_tester_sender --once”.

Receiver setup

Device serial1 / 4:2:15 opened.
PHY A: link=up speed=1000MBit (master)
PHY B: link=up speed=1000MBit (master)
> latency_tester_receiver
Starting capture thread succeeded.
Receiver setup. Listening to incoming packets.
Starting recording sequence...
seq=99 diff=-410
seq=199 diff=-410
seq=299 diff=-410

The output gives you an idea whether it actually works. Actual data should be retrieved by using file
output. File output can be used with for example:

Receiver file output

> latency_tester_receiver --out-file mydata.txt

You may want to use an absolute path here (perhaps using drag & drop from a file manager to get the
path) if the concept of working directories is too uncomfortable.

The file is opened when a sequence starts, and closed when it ends. If the file already exists when a
sequence starts, the file is not overwritten. Instead, the sequence is skipped repeatedly until the file is
deleted or moved by the user. Example:

Terminal Output of Latency Tester Example Run

18

5 Other Features

> latency_tester_receiver --out-file mydata.txt
Starting capture thread succeeded.
Receiver setup. Listening to incoming packets.
File 'mydata.txt' exists, skipping sequence.
File 'mydata.txt' exists, skipping sequence.
Opened file 'mydata.txt' for writing.
Starting recording sequence...
seq=99 diff=410
seq=199 diff=410
seq=299 diff=410
seq=399 diff=410
seq=499 diff=410
seq=599 diff=410
...
seq=9899 diff=420
seq=9999 diff=410
Recording sequence finished.
Problems detected: no
File 'mydata.txt' closed.
File 'mydata.txt' exists, skipping sequence.
File 'mydata.txt' exists, skipping sequence.

The file mydata.txt was deleted shortly after the receiver was started. The file was then deleted. The host
program picked up the next sequence of test packets and wrote them to mydata.txt. The sequences after
that are skipped because mydata.txt still exists. (It will log two skip messages per sequence, because it
encounters a first packet from both paths.) The idea behind this behavior is that tests can be repeated
without much interaction, simply by renaming the output file (maybe giving it a more descriptive name),
without the danger of accidentally overwriting files.

The output file simply contains the differences in receive timestamps in nanoseconds, with 10 ns resolu-
tion:

Example Output File (Partial)

19

5 Other Features

420
430
410
410
420
410
420
430
410
420
420
420
420
420
420
420

These differences should be roughly equivalent to the latency the DUT incurs on ethernet. The values are
positive if the latency values on port A are higher than on port b.

See the ”PTP Timestamps” section for details on the quality of the timestamps.

By default, 10000 samples are sent (depending on sender configuration), and the receiver reports ”Prob-
lems detected: no” only if all samples were included. If you see errors logged on the terminal, there is
probably some sort of problem due to packet drop or corruption.

5.9 Packet Injection

It is possible to manually inject new packets into the ethernet connection. As no actual network interface
is provided, OS mechanisms (such as sockets) cannot be used. Using the host tool is required.

The inject command provides this functionality. It is possible to send arbitrary ethernet packets, includ-
ing packets that are not spec-compliant. This is not a high speed send path – full ethernet bandwidth
cannot be reached. (Although you can instruct the command to repeat packets, in which case it will pro-
duce a high bandwidth stream of the same packet being repeated.)

Use inject_stop to disable the injector again. Use hw_info to check whether it’s currently enabled.

CRC errors can be injected. Degenerate packets (too short, IPG too low) can be created with the ”raw”
parameter. Low level physical layer coding errors can be generated with the ”gen-error” parameter (PHY
emits symbol error for a specific byte). The IPG can be controlled with the ”gap” parameter, which will set
the distance to other generated packets as well as packets that are normally transferred through the wire.

Use ”help inject” to list all parameters.

Using the command may drop packets coming from the opposite source port. The injection logic will wait
until transmission is turned off, then it will inject the packet, and fully drop any other packets from the
opposite port.

Example

20

5 Other Features

Inject a packet that starts with a AB:CD:12:34:56 dest. MAC,
the rest of the packet filled with 0s, on port A (into the
stream of traffic flowing from B to A):
inject A ABCD123456

See help output for advanced parameters that control repeating, raw output (your own preamble), and
so on.

5.10 Blocking Ports

The block_ports command blocks all traffic through the device in a specific direction:

Command Effect

block_ports A Block traffic from B→A, unblock A→B
block_ports B Block traffic from A→B, unblock B→A
block_ports AB Block all traffic
block_ports none Unblock all traffic

This command uses the same hardware logic as the disrupt command (basically it’s just a simpler version
of the same command). Using either resets the state set by the other command.

5.11 Packet Disruption

The disrupt command can be used to drop or to destroy some or all packets in a certain direction. This
is a form of error injection suited for testing reliability of low level protocols. It can either flip a single bit
in a packet at a user-chosen byte offset, or discard entire packets.

(Restriction: cannot drop specific packet according to filter-like matching criteria etc.)

Use disrupt_stop to disable disruption again. Use hw_info to check whether it’s currently enabled.

Example

Disrupt a number of packets for a short time:
B on port B (traffic flowing from A to B)
true just drop the packets (instead of creating CRC errors)
20 drop 20 packets in total
10 drop only every 10th packet (this makes it active for ~200 packets)
disrupt B true 20 10

5.12 MDIO Access

5.12.1 Raw MDIO access

The mdio_read and mdio_write commands provide direct access to the PHY’s MDIO registers. Access
to register 22 is intercepted/emulated by the firmware.

21

6 Known Problems

5.12.2 Changing PHY Ethernet Speed

Ethernet speed is controlled by the PHYs. By default, they are set to use a common speed, and the
firmware automatically adjusts the PHYs to use the slowest negotiated speed of either PHY (devices with
firmware 1.00 do not support this behavior - you need to set the speed manually).

You can use the speed command to force specific speed modes on both PHYs:

Speed Command

1000 MBit speed 1000
100 MBit (full duplex) speed 100
10 MBit (full duplex) speed 10
Highest common speed mode of both PHY speed same
Manual control speed manual

The same mode puts the PHYs into auto negotiation mode at first, and if the speed modes mismatch,
the faster PHY is forced into a lower speed mode. If a link goes down and up again, the process is
repeated. Technically, the process can re-establish the link multiple times, which makes it slower and may
be annoyingwhen troubleshooting connected devices. The set_device_phy_wait command can be used
to set the fixed time after which the state machine assumes the PHY cannot establish a link.

The manual mode lets each PHY negotiate the speed independently, which will lead to problems if the
device’s port A and B PHYs do not negotiate the same speed.

The values set by the ”speed” and the ”set_device_phy_wait” commands are stored as
permanent settings on the device.

Older host tool versions do not have the ”same” mode implemented, and require the user to
manually correct speedmodes. Even older versions do not even offer the ”speed” command,
and require using manual mdio_write commands. In addition, the ”same” mode requires at
least version 1.06 firmware.

5.13 Device Settings

Since firmware 1.06, the device persistently stores some settings on its EEPROM. You can inspect
these settings with the ”fw_info” command. You can clear all persistently stored settings with
the ”reset_device_settings” command. Power cycle the device after running the latter command
successfully in order to clear any runtime state (PHY registers, inject/disrupt features).

6 Known Problems

• If no ethernet is connected, or there are no packets on the wire at all, the host tool may not terminate
properly, even if Wireshark is terminated. This happens because the host tool will never write to the
pipe to Wireshark. The host tool will continue to run in the background, and will block access to the
device. In this case, the LED will continue blinking, and you may have to kill the host tool manually.
This problem should not occur with host tool v1.2, which has a workaround that terminates it after
a one second timeout.

22

7 Further Readings

• If extcap is used, and start of capture fails (such as inaccessible device), Wireshark does not termi-
nate gracefully. This seems to be a Wireshark issue.

• If extcap is used, and capturing errors (such as unplugging the Ethernet Debugger device), Wire-
shark does sometimes not notice that capturingt terminated.

• If extcap is used, Wireshark sometimes gets into a mode in which the Wireshark GUI seems to
indicate that capturing started correctly, but the host tool is blocked trying to open Wireshark’s
extcap control pipes. Restarting Wireshark helps (you may need to kill the blocked ”nose” process
as well).

• The USB host part of some AMD chipsets seem not to play well with this device at least on Linux.
• 10 MBit mode is not working.

7 Further Readings

7.1 White Papers

7.1.1 Ethernet Debugger Timing

The Ethernet Debugger can be used to intercept and capture traffic between two Ethernet devices. The
device is normally not supposed to affect the Ethernet traffic itself. But for technical reasons, the device
can affect the traffic by introducing additional latency and jitter compared to a simple Ethernet cable. This
effect is minimal, but can matter for real time applications such as PTP. The goal of this document is to
provide information about the introduced latency and jitter, as well as actual measurements.

Online-Link6, PDF-Download7

7.2 Statements

7.2.1 Letter of Volatility

This letter describes volatile, non-volatile, and storage media on the specified product. Customers can
use this document to comply with security requirements and equipment handling procedures.

Online-Link8, PDF-Download9

Document version: 87 / Sep 01, 2021 13:54

6https://intona.eu/doc/in3038wp
7https://intona.eu/doc/in3038wp/pdf
8https://intona.eu/doc/in3037st
9https://intona.eu/doc/in3037st/pdf

23

https://intona.eu/doc/in3038wp
https://intona.eu/doc/in3038wp/pdf
https://intona.eu/doc/in3037st
https://intona.eu/doc/in3037st/pdf

	Introduction
	Features
	Requirements
	Restrictions
	Firmware Changelog
	Firmware 1.06
	Firmware 1.00

	Host Tool Changelog
	Host tool git master
	Host tool v1.2
	Host tool v1.1 (686fe4f)
	Host tool v1 (f5eed9c)

	Hardware Setup
	LED Meaning
	Port LEDs
	Main LED

	Software Installation
	Linux
	macOS
	Windows
	Verifying Device Access
	Wireshark extcap Setup
	Linux, macOS
	macOS (app bundle)
	Windows

	Firmware Update
	Unix-like
	Windows

	Capturing
	Wireshark extcap
	Capturing Options
	Wireshark extcap Toolbar

	Directly Starting Wireshark from Host Tool
	Statistics
	Capturing to a File
	Selecting the Device
	Configuring the Buffer Size

	Other Features
	PoE Passthrough
	PTP Timestamps
	Supported Command Line Options
	Interactive Command Line
	Supported Commands
	IPC Interface
	Identify Function
	Latency Tester
	Introduction
	Instructions

	Packet Injection
	Blocking Ports
	Packet Disruption
	MDIO Access
	Raw MDIO access
	Changing PHY Ethernet Speed

	Device Settings

	Known Problems
	Further Readings
	White Papers
	Ethernet Debugger Timing

	Statements
	Letter of Volatility

